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A Nonbacktracking Matrix Decomposition 
Algorithm for Routing on Clos Networks 

John D. Carpinelli, Senior Member, IEEE, and A. Yavuz Oruq, Senior Member, IEEE 

Abstract- A number of matrix decomposition schemes were 
reported for routing on Clos switching networks. These schemes 
occasionally fail to find the right decomposition, unless backtrack- 
ing is used. This paper shows that a partition may occur during 
the decomposition process, and that this is the underlying reason 
these algorithms fail for some decompositions. It then presents 
a parallel algorithm which caa recognize when a partition exists 
and set up the Clos network without backtracking. 

I. INTRODUCTION 

HREE-stage Clos networks have been studied extensively T in telephone switching theory [2 ] ,  [6]. A number of 
backtracking set-up or routing schemes have been reported in 
the literature for these networks [3], [lo], [ l l ] ,  [16]. As shown 
in Fig. 1, a Clos network encompasses three stages where the 
first stage contains k switches, each of which has m inputs 
and n outputs. The second stage consists of n k x k switches, 
each of which receives exactly one input from each first- 
stage switch. By convention, the inputs to first-stage switch 
i (1 5 i 5 IC) are numbered from ( i  - 1) . m + 1 to i . m. Each 
switch can realize any mapping of its inputs onto its outputs, 
provided that no input is mapped onto more than one output 
and that no output has more than one input mapped onto it. 
The final stage has k n x m switches, each of which derives 
one input from each second-stage switch. A Clos network with 
these parameters is referred to as an (n ,  m, k )  Clos network. 
It is known that if n 2 m, the network is rearrangeable, and 
if n 2 2m - 1, the network is strictly nonblocking [6]. The 
number of inputs to the network is N = m,. k .  

Routing is the process of setting the switches of a permu- 
tation network to realize a given permutation, or connection 
pattern from the inputs to the outputs. The looping algorithm 
is used frequently with Bene5 networks [13], [18], but it does 
not generalize to all Clos networks. Andresen [l] developed 
an extension of the looping algorithm for Clos networks which 
have m = n = 2‘, where T is a positive integer. However, 
a different approach is needed to route on all Clos networks. 
One promising approach is the matrix decomposition class of 
routing algorithms. 

Matrix decomposition algorithms make use of the design 
parameters of the Clos network. Most algorithms in the matrix 

Paper approved by J.M. Jaffe the Editor for Routing and Switching of 
the IEEE Communications Society. Manuscript received January 15, 199 1; 
revised June 15, 1991. 

J.D. Carpinelli is with the Department of Electrical and Computer Engi- 
neering, New Jersey Institute of Technology, Newark, NJ 07102. 

A. Y. Orus is with the Department of Electrical Engineering, University of 
Maryland, College Park, MD 20740. 

IEEE Log Number 9211211. 

1 
m 

m f l  
2m 

N-m 
N 

Fig. 1. Three-stage Clos network. 
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decomposition class start by deriving a k x k matrix H,, where 
H m [ i , j ]  is the number of inputs to first-stage switch i which 
are to be routed to third-stage switch j under the permutation 
to be realized. Because each first-stage switch has m inputs, 
the sum of the entries in each row is m; since each last- 
stage switch has m outputs, the sum of the entries in each 
column is also m. All of these algorithms are based on a 
principle which extracts a permutation matrix, E,, from H ,  
by forming the nonsingular matrix Hm-l = Hm - E,, sets 
m = m - 1 and repeats the process until m = 1, at which 
time H1 = El.  The rationale behind this principle is the well- 
known Hall’s theorem on systems of distinct representatives 
[8]. Consequently, by determining the setting for one second- 
stage switch, the problem of realizing a permutation on the 
original Clos network can be reduced to that of realizing a 
permutation on a Clos network with m - 1 input switches in 
its outer stages. The same procedure can be applied until the 
remainder network reduces to a single second-stage switch. 

By extracting a permutation matrix from H,, matrix de- 
composition algorithms do just that. The extracted matrix, Em,  
defines the setting of one second-stage switch, and Hm-l is 
the setting of the ( n  - 1, m - 1, k )  Clos network. E ,  also 
induces a partial setting for each first(1ast)-stage cell. 

Most algorithms in the matrix decomposition class, with 
the exception of Neiman’s algorithm [12], do not success- 
fully realize all possible permutations. These algorithms do 
not recognize the inherent partitioning that exists within the 
matrices for some permutations, and create an extraction 
matrix with one or more rows of all zero elements. This is 
due to a condition which occurs in the H ,  matrix during 
the decomposition procedure. As a result of this, matrix de- 
composition algorithms generally require backtracking, which 
may include and remove an element from E,  before the 
matrix is set. This is a bottleneck in matrix decomposition 
algorithms, and results in reduced routing speed. Ideally, a 
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matrix decomposition algorithm should not use backtracking to 
route the Clos network. The remainder of the paper introduces 
the notion of partitioning which accounts for the failures of the 
previously reported matrix decomposition algorithms. It then 
gives a partitioning procedure which computes the E, matrix 
without any backtracking. 

column of C has a nonzero entry. If IC1 = 1721, then an element 
in a row of R may be marked only if it is in a column of C. 

C, and 
H ,  [ i ,  j] # 0. To prove the theorem by contradiction, assume 
that H,[i, j ]  is marked. Since no other element in row i may 
be marked, R + R-i. Now IRI = 2-1. Since the columns of 
C have nonzero elements only in the rows of R, and only one 
element may be marked per row, at most (G - 1 elements can 

Proof: Assume that IC( = IRI = z, i E R, j 

11. PARTITIONING 

Partitioning can best be defined using an example. Given a 
Clos network with m = n = 4 and k = 5, the permutation 
shown below in (1) has the matrix 

A matrix decomposition algorithm would proceed by marking 
one nonzero entry, removing its row and column from the 
matrix, and repeating this on the remaining submatrix until it 
is null. The marked elements define the matrix to be extracted. 

For example, assume that H4[1,1] is marked. Then the first 
row and first column are removed, and the submatrix left is 

0 0 2 2  

2 1 0 0  
1 1 0 0  

H4= 1 0 2 1 1 1 .  

An algorithm might attempt to mark H4[3 ,3 ] ,  but this would 
result in the submatrix 

H4=[, 3 
Clearly, no permutation matrix can be derived from this 
matrix. The fault lies in the selection of H4 [3,3]. Once H4 [ 1,1] 
is chosen, columns 4 and 5 have nonzero entries only in rows 2 
and 3. Therefore, any elements marked in columns 4 and 5 
must be from rows 2 and 3. More importantly, however, any 
elements marked in rows 2 and 3 must be from columns 4 
and 5. If H4[3,3] is chosen, the only non-zero elements in 
columns 4 and 5 both appear in row 2. Since they cannot 
both be chosen, no permutation matrix can be derived which 
includes both H4[l, I] and H4[3, 31. Hence, H4[3, 31 is not a 
valid choice. 

These remarks are generalized in the following theorem. 
Theorem I :  Let C be any subset of nonzero columns of H,, 

and let R be the set of all rows of H ,  for which at least one 

be marked in the columns of C. Therefore, at least one column 
of C will not have any marked elements, and no permutation 
matrix can be formed. Hence, H ,  [ i ,  j] cannot be chosen, and 

The dual of this theorem is also true. 
Theorem 2: Let R be any subset of nonzero rows of H,, 

and let C be the set of all columns of H,,, for which at least one 
row of R has a nonzero entry. If (RI = ICJ, then an element 
in a column of C may be marked only if it is in a row of R. 

The proof is similar to that of the previous theorem. Note 
that any matrix which meets the conditions of Theorem 1 also 
meets the conditions of Theorem 2. 

These two theorems can be combined into one theorem, 
which is based on a fact given by Shapiro [17]. 

Theorem 3: Given a matrix H,, let PI and PZ be k x k 

permutation matrices such that PI H ,  P2 = [: :], where 

A is z x z ,  B is z x ( k  - z ) ,  C is (IC - z )  x z, and D is 
(IC - z )  x ( k  - 2). If there exist PI and P2 such that B and/or 
C contain only zeros, then an element in H,  may be marked 
only if it is in either A or D in PI H,P2. 

Proof: Since PI and Pz are permutation matrices, 
PI H ,  P2 is just a series of row and column exchanges of H,; 
entries are moved but not altered. If B contains all zeros, then 
PI H ,  Pz contains z rows which have nonzero elements only 
in exactly z columns. H ,  must also contain z rows which 
have nonzero elements only in exactly z columns, and the 
conditions of Theorem 2 are met. If C contains all zeros, then 
PI H,P2 contains z columns which have nonzero elements 
only in exactly z rows, and the conditions of Theorem 1 are 
met. Note that if PI and P2 can be chosen so that either B 
or C contains only zeros, then there exist Pi and PL such 
that P{H,PL contain only zeros in the other quadrant of the 
matrix. 

These three equivalent theorems divide H, matrices into 
two classes: those which contain partitions and those which 
do not contain partitions. 

In the above example, after H4 [ 1,1] is marked, rows 4 and 5 
have nonzero entries only in columns 2 and 3. By Theorem 2, 
an element in column 2 or 3 may be marked if and only if it 
is in row 4 or 5. Thus, H4[3,3] is not a valid choice. In effect, 
two submatrices are formed: one consisting of the rows and 
columns which meet the criteria of one of the theorems, and 

the theorem is proved by contradiction. 

(1) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

' = ( 1  5 13 17 14 15 18 19 9 10 16 20 2 6 7 11 3 4 8 12) 
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2- 
0 

1 

0 

1 
0 -  

one consisting of the remaining rows and columns. For the 
above example, after H4 [ 1, I] is marked, the remaining matrix 
must be partitioned into 

- 0 0 1 0 1  0 0 2 -  
0 0 0 0 1  1 0 0  

1 0 0 0 1  0 0 1  

2 0 2 0 0  0 0 0 ‘  
0 0 1 1 0  0 2 0  
0 2 0 1 0  0 1 0  
1 0 0 0 0  2 0 1  

- 0 2 0 0 1  1 0 0 -  

H4 = 

Cardot [3] provided the following counterexamples to Ja- 
jszczyk’s algorithm. Given the matrix 

‘0  0 1 0  1 0  0 0 0 2 
0 0 0 0 1 0 1 2 0 0  
0 0 0 0 0 3 0 0 1 0  
1 0 0 0 1 1 0 0 0 1  
0 0 0 2 0 0 0 2 0 0  
2 0 2 0 0 0 0 0 0 0  
0 0 1 1 0 0 0 0 2 0  
0 2 0 1 0 0 0 0 1 0  
1 0 0 0 0 0 2 0 0 1  

-0  2 0 0 1 0  1 0  0 0 

Elements in these submatrices would be marked in the usual 
manner. 

111. WHY JAJSZCZYK’S ALGORITHM FAILS 

Jajszczyk’s algorithm [lo] begins by setting up the matrix 
H ,  in the usual manner. The number of zeros in each row and 
column is counted, and an arbitrarily chosen nonzero element 
in the row or column with the most zeros is marked. The row 
and column of the marked element are crossed out, the number 
of zeros is recounted, and the process is repeated until all rows 
and columns are crossed out. The matrix to be extracted is the 
permutation matrix with ones at the marked positions. 

Consider the permutation below: 

the algorithm could mark the elements H4[3,6], H4[5,8], 
H4[6, 11, and H4[8 ,  21, in that order. After removing the rows 
and columns of the marked elements, the matrix becomes 

1 0 1  
0 0 1  

0 
1 

0 
0 

* 
0 0 1  0 0 

* 
* 

2 1 1 0  0 

2 7 8 1 5 1 1 6 3 9 1 2 4  
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

P =  ( * 
0 0 0  
0 0 1  

2 
1 

0 
0 

The matrix for this permutation is 

r l  0 2 01  Obviously, choosing H4[7,4] or H4[7,9] is necessary, but 
either choice leaves a matrix with a column of zeros. This 
prevents a permutation matrix from being found. 

Cardot’s counterexample shows the flaw in Jajszczyk’s 
algorithm after the second choice. After two passes the matrix 
becomes 

1 1 0 1  

0 1 0 2  
H3= I l  1 1 ol  

Since two is the smallest number of nonzero elements in a row 
or column, any nonzero element in any row or column having 
this number of nonzero elements may be chosen. Arbitrarily, 
H3[l, 31 is chosen and marked. Row 1 and column 3 are 
deleted from the matrix leaving 

[: 0 1  ; * 4 1 .  
Column 4 has only two nonzero elements, so H3[4,4] is 
selected. The algorithm continues, marking H3 [2,1] arbitrarily, 
and finally H3[3,2]. The matrix, with the marked elements 
denoted by asterisks, is 

At this point, rows 1, 2, 4, 6, and 9 have nonzero entries 
only in columns 1, 3, 5, 7, and 10 of the remainder of 
the matrix. Applying Theorem 2, let R = { 1,2,4,6,9} and 
C = { 1,3,5,7,  lo}. Any element chosen from the columns of 
C must also be in the rows of R. Specifically, the matrix must 
be partitioned into two submatrices: one consisting of the rows 
and columns of R and C, and the other consisting of the other 

r l  0 2* 0 1  
1 0  

H 3 =  1; 1; 1 a] 
0 2  
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2 -  
0 

1 

0 

1 

rows and columns. This yields the submatrices H,[8, 21 is marked, the matrix becomes 

- 0  
0 

1 

2 

1 

In this matrix, rows 1, 2, 4, 6, 9, and 10 have nonzero entries 
only in columns 1, 3, 5, 7, and 10. Since only one entry may 
be chosen in each row and column, at most five elements 
may be marked in these six rows. Therefore, one row will not 
have any marked elements and a permutation matrix cannot 
be formed. Hence, H,[8, 21 is again an illegal choice. 

0 1  2 
2 1  1 

1 
0 

0 

2 

0 

1 
1 

1 

0 

0 

0 
1 

0 

0 

2 

and 

- 0  1 0 1  0 0 2  
0 0 0 1  1 0 0  

1 0 0 1  0 0 1  
* 

2 2 0 0  0 0 0  
1 1 0  0 2 0  

1 0 0 0  2 0 1  
-0  0 0 1  1 0 0  

~o * 

Obviously H,[lO, 21 is a required choice, and Hm[8,  21 is 
an illegal choice. Once H,[8,2] is marked by Jajszczyk’s 
algorithm, a permutation matrix can no longer be extracted. 
Note that Jajszczyk’s algorithm could have chosen H,, [lo, 21 
instead of H ,  [8,2] and successfully found a permutation 
matrix without backtracking. The existence of a partition 
implies that an invalid choice can be made, but does not 
guarantee that it will be made. 

This partitioning is not necessarily unique, but any valid 
partitioning will ultimately determine that H,, [8.2] is an 
invalid choice. This can easily be shown by contradiction. If 

IV. WHY RAMANUJAM’S ALGORITHM FAILS 

Ramanujam [16] uses a different matrix than the other 
algorithms in this class, but one that is related to the standard 
H ,  matrix. The allocator matrix, M ,  has dimension Ic x I C ,  
and M [ i , j ]  is the set of all destinations of inputs to first-stage 
switch j which are output at third-stage switch i. It is actually 
the transpose of H,, with the entries listed rather than counted. 

The phase of the algorithm which extracts the desired matrix 
operates as follows. Set up an IC x IC matrix T ,  where T[ i , j ]  
is the maximum element of M [ i , j ] ,  or 0 if M[Z,j] is empty. 
The largest element of T is marked, and its row and column 
are crossed off. This is repeated on the submatrix left in T 
until T is null or contains all zeros. If T is null, the marked 
elements define a matrix for extraction; these elements are 
deleted from M ,  and the process is repeated until M is null. 
If T is not null, reform T ,  replacing the largest value with a 
zero, and repeat this stage, choosing the next largest element 
of T.  Finally, a renumbering is performed to accommodate 
the author’s notation. 

For example, consider the Clos network with m = n = 3 
and IC = 4. The permutation to be realized is 

2 7 8 1 5 1 1 6 3 9 1 2 4  1 0 ’  1 ?,= ( 1 2 3 4 5 G 7 8 9 1 0 1 1 1 2  
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which is the same permutation used previously. The allocator 
matrix M and T matrix are 

L Q, (11) @ {10,12)J 
2 1 3 0  

T = [ :  t ] .  
0 11 0 12 

Since 12 is the largest element of T ,  T[4,4] is marked, and 
row 4 and column 4 of T are deleted. The largest remaining 
element is 9, so T[3,3] is marked and its row and column are 
deleted. Continuing, T[2,2] = 5 and T[ l ,  11 = 2 are chosen. 
Denoting each marked location with an asterisk, M becomes 

{2)* (1) 13) 

{7,8) @ {9)* 
M =  [ 

@ (11) @ {10,12)* 

Kubale [ 111 gives the following counterexample to Ramanu- 
jam’s algorithm. Given a Clos network with m = n = 2 and 
IC = 4, Ramanujam’s matrix for the permutation 

1 2 3 4 5 6 7 8  
P =  ( 3 5 1 4 2 6 7 8  

is 

(3) (4) @ 

(5) @ (6) @ 
iP @ iP (7 , s )  

The representation matrix is 

0 1 2 0  

T =  [: :]. 
0 0 0 8  

Since 8 is the largest element, T[4,4] is marked, and row 4 
and column 4 are removed, leaving 

0 1 2  

T = [ Z  1 .  
T[3,3] would be chosen next, since 6 is the largest remaining 
element. T then becomes 

Unfortunately, the algorithm then makes the only invalid 
choice, namely, T[2,2]. Since the process fails, the algorithm 

sets the largest element of the original T matrix to 0 and tries 
again. For this matrix, T then becomes 

YO 1 2 01 

No nonzero entry can be extracted from row 4 or column 4, 
and the algorithm cannot derive a matrix with exactly one 
nonzero entry in each row and column. 

Ramanujam’s matrix decomposition algorithm works for 
most, but not all, permutations. It fails when it zeroes out 
an entire row or column; this is due to its inability to deal 
with partitions within the matrix. Had partitioning been used 
in Kubale’s counterexample, using any of the three theorems, 
the original representation matrix would have been partitioned 
into the submatrices 

0 1 2  l3  5 0 6  1 and 1 1 
Ramanujam’s algorithm can handle this case once the matrix 
has been partitioned. Ramanujam’s algorithm can handle any 
permutation if a mechanism to recognize and act upon inherent 
partitions is incorporated into it. The added mechanism is 
actually sufficient in itself; Ramanujam’s algorithm would then 
serve as an heuristic to make arbitrary choices when no forced 
choice exists. 

V. A PARTITIONING ALGORITHM 

Any matrix which can cause backtracking in a matrix 
decomposition algorithm contains a partition. Any nonback- 
tracking algorithm to perform a matrix extraction must be able 
to either determine when a partition exists and act accordingly 
or ensure that no invalid choice is made if a partition exists. 
Neiman’s algorithm acts upon partitions by convolving the 
marked elements until the partitions are accounted for although 
never recognized per se. An algorithm to recognize these 
partitions is given below. 

PROCEDURE PARTITION ( I f m ,  E,) ; 

var H L ,  partition-exists, MI ,  Mz ; 

BEGIN 

1. H L  := H,; E ,  := 0 ;  
WHILE H L  # @ DO 
BEGIN 

2. partition-exists := FALSE ; 
GENERATE_PARTITION( H;, partition-exits, MI,  M2) ; 
IF (partition-exists = FALSE) THEN 

3a. BEGIN 
Choose i . j  such that H L [ i , j ]  # 0 ;  
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H L  := H L  \ i , j ;  E,[i,j] := 1 
END 
ELSE 

3b. BEGIN 
PARTITION( MI, E l )  ; 
PARTITION(M2, E2) ; 
E, := E ,  + El + E,; H L  := @ 
END 
END (while) 

END(procedure) ; 

The algorithm works as follows. Step 1 initializes the vari- 
ables. The WHILE loop, consisting of steps 2,3a, and 3b, adds 
elements to E, until it is a permutation matrix. Step 2 calls 
subroutine GENERATE-PARTITION to check if a partition 
exists, i.e., if the conditions of Theorem 2 are met. If a partition 
exists, the subroutine forms the submatrices and returns them 
in M I  and M2. If no partition exists, step 3a marks an arbitrary 
nonzero element and removes its row and column from H k .  
If a partition does exist, step 3b recursively processes the two 
partition submatrices. 

The heart of the algorithm is subroutine GENERATE- 
PARTITION. Here it is implemented as a highly parallel 
subroutine which checks all 2k possible sets of rows of the 
matrix. This subroutine is shown below. 

PROCEDURE GENERATEPARTITION 
( H L ,  partition-exists, M I .  M2) ; 

var R , C ;  

BEGIN 

1. Mi := 0; M2 := 0 ;  
PARFOR each possible set of rows of H L  DO 
BEGIN 

2. R := the set of rows of H L ;  
C := the set of all columns of H L  which have at least 

one nonzero element in a row of R; 
3. IF IRI = IC1 THEN 

BEGIN 

MI := the rows and columns of H L  in R and C ; 
M2 := the rows and columns of H L  not in R and C ; 
partition-exists := TRUE 
END ; 
END( parfor) 

END( procedure) ; 

This subroutine generates all possible sets R in parallel, and 
checks all possible partitions. Step 1 sets the parameters and 
begins the parallel executions. Step 2 checks the conditions of 
Theorem 2. If a partition exists, step 3 forms the partition 

submatrices and sets partition-exists. Once a partition is 
found, all parallel executions are immediately terminated. 
The subroutine exits and returns the values derived from the 
parallel execution which finds the partition. If more than one 
partition is found, the algorithm arbitrarily selects one and 
returns its values in MI and M2. 

To illustrate the execution of this algorithm, consider the 
matrix 

r i  0 2 01 
0 2 0 1  

0 1 0 2  
H m =  l2 0 1 0] 

Step 1 sets H L  = H ,  and E, = 0. Step 2 calls subroutine 
GENERATE-PARTITION. Step 1 of the subroutine sets its 
parameters and begins the parallel executions. One of these 
executions has R = {1,3}. Step 2 sets C = {1,3}; since 
1721 = IC) = 2, step 3 sets partition-exists = TRUE, and 

r l  2 1 r 1 

Returning to the main procedure, a partition does exist, so 
step 3b recursively processes the two submatrices. This may 
result in 

1 0 0 0  0 0 0 0  

0 0 1 0  0 0 0 0  
0 0 0 0  0 1 0 0  

E l =  [ O  and E * =  [ O  '1 
The final result is 

r l  0 0 01 
0 0 0 1  

0 1 0 0  
E m =  lo 0 1 0 J  

This algorithm will always generate the permutation matrix 
E ,  without backtracking. This is because a partition is rec- 
ognized before an element is chosen; thus, illegal choices 
are never made. The subroutine GENERATJ-PARTITION is 
exhaustive, so a partition is always found if one exists. 

The time complexity of PARTITION is dominated by 
the time complexity of subroutine GENERATE-PARTITION, 
which is called k times in the worst case. If no partition 
exists, the subroutine checks all 2'" possible sets of R the 
first time 2'-l sets the second time, and so on. For all IC 
iterations, this can result in at most 2'"+' - 1 executions. Using 
one processor, the time complexity becomes T ( k )  = O(2'). 
This time can be improved using more than one processor; 
however, there are constraints. One element of E ,  must be 
found before the next can be sought, so the k subroutine 
calls from PARTITION cannot overlap. The parallel branches 
in GENERATE-PARTITION are totally independent, so the 
time complexity of the subroutine can be reduced to O(1) 
by using 2k processors. Thus, using 2'" processors, the time 
complexity of PARTITION reduces to O( I C ) .  The performance 
of PARTITION depends on the value of IC.  In particular, this 
algorithm is most efficient when IC = O(lg N ) ,  where N is 
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the number of inputs to the Clos network. In this case, the 
time and hardware complexities of PARTITION are O(lg N), 
and O ( N ) ,  respectively. Hence, when k = O(lg N), one can 
decompose the H ,  matrix without backtracking in logarithmic 
time and using a polynomial order of processors. As such, this 
fact shows that the conjecture by Bassalygo and Neiman [lo] 
does not hold for all values of IC. We also note that the worst 
time and hardware complexities of PARTITION are O ( N )  and 
0 ( 2 N )  which occur when k = O ( N ) .  

VI. CONCLUSIONS 
Partitioning is an important characteristic of the matrix 

decomposition class of routing algorithms for Clos networks. 
This paper has demonstrated its applicability and used it to 
improve current routing algorithms. A separate algorithm has 
been developed which makes use of partitioning to find the 
extraction matrix E,. 

In spite of the high hardware cost, the partitioning algorithm 
compares well to other algorithms in its class. Neiman’s 
algorithm, the only other matrix decomposition algorithm 
which works for all permutations, has a runtime of O(k2m)  
for extracting one matrix [9]. The parallel version of the 
partitioning algorithm improves on this runtime, and does 
not require the backtracking used by Stage 2 of Neiman’s 
algorithm. The algorithms of Jajszczyk and Ramanujam are 
both faster than the partitioning algorithm, but do not work 
on all permutations. The partitioning algorithm can be used 
to make these algorithms realize all permutations, or they can 
be used to generate the arbitrary choices of i and j in the 
partitioning algorithm. 

Finally, we should note that, after we submitted this paper, 
we found out from one of the referees that Gordon and 
Srikanthan [7] published an algorithm which they claimed to 
be nonbacktracking. However, Chiu and Siu [5] have reported 
an error in this algorithm. They also provided a modified 
version of the original algorithm which they claim to be 
correct based on simulation results, but without a proof. Unlike 
most matrix decomposition algorithms, the procedures in these 
papers use two matrices, rather than one, and are thus not 
directly amenable to the analysis presented in this paper. 
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