
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 41, NO. 8, AUGUST 1993 1245

A Nonbacktracking Matrix Decomposition
Algorithm for Routing on Clos Networks

John D. Carpinelli, Senior Member, IEEE, and A. Yavuz Oruq, Senior Member, IEEE

Abstract- A number of matrix decomposition schemes were
reported for routing on Clos switching networks. These schemes
occasionally fail to find the right decomposition, unless backtrack-
ing is used. This paper shows that a partition may occur during
the decomposition process, and that this is the underlying reason
these algorithms fail for some decompositions. It then presents
a parallel algorithm which caa recognize when a partition exists
and set up the Clos network without backtracking.

I. INTRODUCTION

HREE-stage Clos networks have been studied extensively T in telephone switching theory [2] , [6]. A number of
backtracking set-up or routing schemes have been reported in
the literature for these networks [3], [lo], [l l] , [16]. As shown
in Fig. 1, a Clos network encompasses three stages where the
first stage contains k switches, each of which has m inputs
and n outputs. The second stage consists of n k x k switches,
each of which receives exactly one input from each first-
stage switch. By convention, the inputs to first-stage switch
i (1 5 i 5 IC) are numbered from (i - 1) . m + 1 to i . m. Each
switch can realize any mapping of its inputs onto its outputs,
provided that no input is mapped onto more than one output
and that no output has more than one input mapped onto it.
The final stage has k n x m switches, each of which derives
one input from each second-stage switch. A Clos network with
these parameters is referred to as an (n , m, k) Clos network.
It is known that if n 2 m, the network is rearrangeable, and
if n 2 2m - 1, the network is strictly nonblocking [6]. The
number of inputs to the network is N = m,. k .

Routing is the process of setting the switches of a permu-
tation network to realize a given permutation, or connection
pattern from the inputs to the outputs. The looping algorithm
is used frequently with Bene5 networks [13], [18], but it does
not generalize to all Clos networks. Andresen [l] developed
an extension of the looping algorithm for Clos networks which
have m = n = 2‘, where T is a positive integer. However,
a different approach is needed to route on all Clos networks.
One promising approach is the matrix decomposition class of
routing algorithms.

Matrix decomposition algorithms make use of the design
parameters of the Clos network. Most algorithms in the matrix

Paper approved by J.M. Jaffe the Editor for Routing and Switching of
the IEEE Communications Society. Manuscript received January 15, 199 1;
revised June 15, 1991.

J.D. Carpinelli is with the Department of Electrical and Computer Engi-
neering, New Jersey Institute of Technology, Newark, NJ 07102.

A. Y. Orus is with the Department of Electrical Engineering, University of
Maryland, College Park, MD 20740.

IEEE Log Number 9211211.

1
m

m f l
2m

N-m
N

Fig. 1. Three-stage Clos network.

+1

decomposition class start by deriving a k x k matrix H,, where
H m [i , j] is the number of inputs to first-stage switch i which
are to be routed to third-stage switch j under the permutation
to be realized. Because each first-stage switch has m inputs,
the sum of the entries in each row is m; since each last-
stage switch has m outputs, the sum of the entries in each
column is also m. All of these algorithms are based on a
principle which extracts a permutation matrix, E,, from H ,
by forming the nonsingular matrix Hm-l = Hm - E,, sets
m = m - 1 and repeats the process until m = 1, at which
time H1 = El. The rationale behind this principle is the well-
known Hall’s theorem on systems of distinct representatives
[8]. Consequently, by determining the setting for one second-
stage switch, the problem of realizing a permutation on the
original Clos network can be reduced to that of realizing a
permutation on a Clos network with m - 1 input switches in
its outer stages. The same procedure can be applied until the
remainder network reduces to a single second-stage switch.

By extracting a permutation matrix from H,, matrix de-
composition algorithms do just that. The extracted matrix, Em,
defines the setting of one second-stage switch, and Hm-l is
the setting of the (n - 1, m - 1, k) Clos network. E , also
induces a partial setting for each first(1ast)-stage cell.

Most algorithms in the matrix decomposition class, with
the exception of Neiman’s algorithm [12], do not success-
fully realize all possible permutations. These algorithms do
not recognize the inherent partitioning that exists within the
matrices for some permutations, and create an extraction
matrix with one or more rows of all zero elements. This is
due to a condition which occurs in the H , matrix during
the decomposition procedure. As a result of this, matrix de-
composition algorithms generally require backtracking, which
may include and remove an element from E, before the
matrix is set. This is a bottleneck in matrix decomposition
algorithms, and results in reduced routing speed. Ideally, a

0090-6778/93$03.00 0 1993 IEEE

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:16 from IEEE Xplore. Restrictions apply.

1246 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 41, NO. 8, AUGUST 1993

matrix decomposition algorithm should not use backtracking to
route the Clos network. The remainder of the paper introduces
the notion of partitioning which accounts for the failures of the
previously reported matrix decomposition algorithms. It then
gives a partitioning procedure which computes the E, matrix
without any backtracking.

column of C has a nonzero entry. If IC1 = 1721, then an element
in a row of R may be marked only if it is in a column of C.

C, and
H , [i , j] # 0. To prove the theorem by contradiction, assume
that H,[i, j] is marked. Since no other element in row i may
be marked, R + R-i. Now IRI = 2-1. Since the columns of
C have nonzero elements only in the rows of R, and only one
element may be marked per row, at most (G - 1 elements can

Proof: Assume that IC(= IRI = z, i E R, j

11. PARTITIONING

Partitioning can best be defined using an example. Given a
Clos network with m = n = 4 and k = 5, the permutation
shown below in (1) has the matrix

A matrix decomposition algorithm would proceed by marking
one nonzero entry, removing its row and column from the
matrix, and repeating this on the remaining submatrix until it
is null. The marked elements define the matrix to be extracted.

For example, assume that H4[1,1] is marked. Then the first
row and first column are removed, and the submatrix left is

0 0 2 2

2 1 0 0
1 1 0 0

H4= 1 0 2 1 1 1 .

An algorithm might attempt to mark H4[3 ,3] , but this would
result in the submatrix

H4=[, 3
Clearly, no permutation matrix can be derived from this
matrix. The fault lies in the selection of H4 [3,3]. Once H4 [1,1]
is chosen, columns 4 and 5 have nonzero entries only in rows 2
and 3. Therefore, any elements marked in columns 4 and 5
must be from rows 2 and 3. More importantly, however, any
elements marked in rows 2 and 3 must be from columns 4
and 5. If H4[3,3] is chosen, the only non-zero elements in
columns 4 and 5 both appear in row 2. Since they cannot
both be chosen, no permutation matrix can be derived which
includes both H4[l, I] and H4[3, 31. Hence, H4[3, 31 is not a
valid choice.

These remarks are generalized in the following theorem.
Theorem I : Let C be any subset of nonzero columns of H,,

and let R be the set of all rows of H , for which at least one

be marked in the columns of C. Therefore, at least one column
of C will not have any marked elements, and no permutation
matrix can be formed. Hence, H , [i , j] cannot be chosen, and

The dual of this theorem is also true.
Theorem 2: Let R be any subset of nonzero rows of H,,

and let C be the set of all columns of H,,, for which at least one
row of R has a nonzero entry. If (RI = ICJ, then an element
in a column of C may be marked only if it is in a row of R.

The proof is similar to that of the previous theorem. Note
that any matrix which meets the conditions of Theorem 1 also
meets the conditions of Theorem 2.

These two theorems can be combined into one theorem,
which is based on a fact given by Shapiro [17].

Theorem 3: Given a matrix H,, let PI and PZ be k x k

permutation matrices such that PI H , P2 = [: :], where

A is z x z , B is z x (k - z) , C is (IC - z) x z, and D is
(IC - z) x (k - 2). If there exist PI and P2 such that B and/or
C contain only zeros, then an element in H, may be marked
only if it is in either A or D in PI H,P2.

Proof: Since PI and Pz are permutation matrices,
PI H , P2 is just a series of row and column exchanges of H,;
entries are moved but not altered. If B contains all zeros, then
PI H , Pz contains z rows which have nonzero elements only
in exactly z columns. H , must also contain z rows which
have nonzero elements only in exactly z columns, and the
conditions of Theorem 2 are met. If C contains all zeros, then
PI H,P2 contains z columns which have nonzero elements
only in exactly z rows, and the conditions of Theorem 1 are
met. Note that if PI and P2 can be chosen so that either B
or C contains only zeros, then there exist Pi and PL such
that P{H,PL contain only zeros in the other quadrant of the
matrix.

These three equivalent theorems divide H, matrices into
two classes: those which contain partitions and those which
do not contain partitions.

In the above example, after H4 [1,1] is marked, rows 4 and 5
have nonzero entries only in columns 2 and 3. By Theorem 2,
an element in column 2 or 3 may be marked if and only if it
is in row 4 or 5. Thus, H4[3,3] is not a valid choice. In effect,
two submatrices are formed: one consisting of the rows and
columns which meet the criteria of one of the theorems, and

the theorem is proved by contradiction.

(1)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

' = (1 5 13 17 14 15 18 19 9 10 16 20 2 6 7 11 3 4 8 12)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:16 from IEEE Xplore. Restrictions apply.

1247 CARPINELLI AND ORUC: NONBACKTRACKING MATRIX DECOMPOSITION ALGORITHM

2-
0

1

0

1
0 -

one consisting of the remaining rows and columns. For the
above example, after H4 [1, I] is marked, the remaining matrix
must be partitioned into

- 0 0 1 0 1 0 0 2 -
0 0 0 0 1 1 0 0

1 0 0 0 1 0 0 1

2 0 2 0 0 0 0 0 ‘
0 0 1 1 0 0 2 0
0 2 0 1 0 0 1 0
1 0 0 0 0 2 0 1

- 0 2 0 0 1 1 0 0 -

H4 =

Cardot [3] provided the following counterexamples to Ja-
jszczyk’s algorithm. Given the matrix

‘0 0 1 0 1 0 0 0 0 2
0 0 0 0 1 0 1 2 0 0
0 0 0 0 0 3 0 0 1 0
1 0 0 0 1 1 0 0 0 1
0 0 0 2 0 0 0 2 0 0
2 0 2 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 2 0
0 2 0 1 0 0 0 0 1 0
1 0 0 0 0 0 2 0 0 1

-0 2 0 0 1 0 1 0 0 0

Elements in these submatrices would be marked in the usual
manner.

111. WHY JAJSZCZYK’S ALGORITHM FAILS

Jajszczyk’s algorithm [lo] begins by setting up the matrix
H , in the usual manner. The number of zeros in each row and
column is counted, and an arbitrarily chosen nonzero element
in the row or column with the most zeros is marked. The row
and column of the marked element are crossed out, the number
of zeros is recounted, and the process is repeated until all rows
and columns are crossed out. The matrix to be extracted is the
permutation matrix with ones at the marked positions.

Consider the permutation below:

the algorithm could mark the elements H4[3,6], H4[5,8],
H4[6, 11, and H4[8 , 21, in that order. After removing the rows
and columns of the marked elements, the matrix becomes

1 0 1
0 0 1

0
1

0
0

*
0 0 1 0 0

*
*

2 1 1 0 0

2 7 8 1 5 1 1 6 3 9 1 2 4
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

P = (*
0 0 0
0 0 1

2
1

0
0

The matrix for this permutation is

r l 0 2 01 Obviously, choosing H4[7,4] or H4[7,9] is necessary, but
either choice leaves a matrix with a column of zeros. This
prevents a permutation matrix from being found.

Cardot’s counterexample shows the flaw in Jajszczyk’s
algorithm after the second choice. After two passes the matrix
becomes

1 1 0 1

0 1 0 2
H3= I l 1 1 ol

Since two is the smallest number of nonzero elements in a row
or column, any nonzero element in any row or column having
this number of nonzero elements may be chosen. Arbitrarily,
H3[l, 31 is chosen and marked. Row 1 and column 3 are
deleted from the matrix leaving

[: 0 1 ; * 4 1 .
Column 4 has only two nonzero elements, so H3[4,4] is
selected. The algorithm continues, marking H3 [2,1] arbitrarily,
and finally H3[3,2]. The matrix, with the marked elements
denoted by asterisks, is

At this point, rows 1, 2, 4, 6, and 9 have nonzero entries
only in columns 1, 3, 5, 7, and 10 of the remainder of
the matrix. Applying Theorem 2, let R = { 1,2,4,6,9} and
C = { 1,3,5,7, lo}. Any element chosen from the columns of
C must also be in the rows of R. Specifically, the matrix must
be partitioned into two submatrices: one consisting of the rows
and columns of R and C, and the other consisting of the other

r l 0 2* 0 1
1 0

H 3 = 1; 1; 1 a]
0 2

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:16 from IEEE Xplore. Restrictions apply.

1248 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 41, NO. 8, AUGUST 1993

2 -
0

1

0

1

rows and columns. This yields the submatrices H,[8, 21 is marked, the matrix becomes

- 0
0

1

2

1

In this matrix, rows 1, 2, 4, 6, 9, and 10 have nonzero entries
only in columns 1, 3, 5, 7, and 10. Since only one entry may
be chosen in each row and column, at most five elements
may be marked in these six rows. Therefore, one row will not
have any marked elements and a permutation matrix cannot
be formed. Hence, H,[8, 21 is again an illegal choice.

0 1 2
2 1 1

1
0

0

2

0

1
1

1

0

0

0
1

0

0

2

and

- 0 1 0 1 0 0 2
0 0 0 1 1 0 0

1 0 0 1 0 0 1
*

2 2 0 0 0 0 0
1 1 0 0 2 0

1 0 0 0 2 0 1
-0 0 0 1 1 0 0

~o *

Obviously H,[lO, 21 is a required choice, and Hm[8, 21 is
an illegal choice. Once H,[8,2] is marked by Jajszczyk’s
algorithm, a permutation matrix can no longer be extracted.
Note that Jajszczyk’s algorithm could have chosen H,, [lo, 21
instead of H , [8,2] and successfully found a permutation
matrix without backtracking. The existence of a partition
implies that an invalid choice can be made, but does not
guarantee that it will be made.

This partitioning is not necessarily unique, but any valid
partitioning will ultimately determine that H,, [8.2] is an
invalid choice. This can easily be shown by contradiction. If

IV. WHY RAMANUJAM’S ALGORITHM FAILS

Ramanujam [16] uses a different matrix than the other
algorithms in this class, but one that is related to the standard
H , matrix. The allocator matrix, M , has dimension Ic x I C ,
and M [i , j] is the set of all destinations of inputs to first-stage
switch j which are output at third-stage switch i. It is actually
the transpose of H,, with the entries listed rather than counted.

The phase of the algorithm which extracts the desired matrix
operates as follows. Set up an IC x IC matrix T , where T[i , j]
is the maximum element of M [i , j] , or 0 if M[Z,j] is empty.
The largest element of T is marked, and its row and column
are crossed off. This is repeated on the submatrix left in T
until T is null or contains all zeros. If T is null, the marked
elements define a matrix for extraction; these elements are
deleted from M , and the process is repeated until M is null.
If T is not null, reform T , replacing the largest value with a
zero, and repeat this stage, choosing the next largest element
of T. Finally, a renumbering is performed to accommodate
the author’s notation.

For example, consider the Clos network with m = n = 3
and IC = 4. The permutation to be realized is

2 7 8 1 5 1 1 6 3 9 1 2 4 1 0 ’ 1 ?,= (1 2 3 4 5 G 7 8 9 1 0 1 1 1 2

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:16 from IEEE Xplore. Restrictions apply.

CARPINELLI AND ORUC: NONBACKTRACKING MATRIX DECOMPOSITION ALGORITHM 1249

which is the same permutation used previously. The allocator
matrix M and T matrix are

L Q, (11) @ {10,12)J
2 1 3 0

T = [: t] .
0 11 0 12

Since 12 is the largest element of T , T[4,4] is marked, and
row 4 and column 4 of T are deleted. The largest remaining
element is 9, so T[3,3] is marked and its row and column are
deleted. Continuing, T[2,2] = 5 and T[l , 11 = 2 are chosen.
Denoting each marked location with an asterisk, M becomes

{2)* (1) 13)

{7,8) @ {9)*
M = [

@ (11) @ {10,12)*

Kubale [111 gives the following counterexample to Ramanu-
jam’s algorithm. Given a Clos network with m = n = 2 and
IC = 4, Ramanujam’s matrix for the permutation

1 2 3 4 5 6 7 8
P = (3 5 1 4 2 6 7 8

is

(3) (4) @

(5) @ (6) @
iP @ iP (7 , s)

The representation matrix is

0 1 2 0

T = [: :].
0 0 0 8

Since 8 is the largest element, T[4,4] is marked, and row 4
and column 4 are removed, leaving

0 1 2

T = [Z 1 .
T[3,3] would be chosen next, since 6 is the largest remaining
element. T then becomes

Unfortunately, the algorithm then makes the only invalid
choice, namely, T[2,2]. Since the process fails, the algorithm

sets the largest element of the original T matrix to 0 and tries
again. For this matrix, T then becomes

YO 1 2 01

No nonzero entry can be extracted from row 4 or column 4,
and the algorithm cannot derive a matrix with exactly one
nonzero entry in each row and column.

Ramanujam’s matrix decomposition algorithm works for
most, but not all, permutations. It fails when it zeroes out
an entire row or column; this is due to its inability to deal
with partitions within the matrix. Had partitioning been used
in Kubale’s counterexample, using any of the three theorems,
the original representation matrix would have been partitioned
into the submatrices

0 1 2 l3 5 0 6 1 and 1 1
Ramanujam’s algorithm can handle this case once the matrix
has been partitioned. Ramanujam’s algorithm can handle any
permutation if a mechanism to recognize and act upon inherent
partitions is incorporated into it. The added mechanism is
actually sufficient in itself; Ramanujam’s algorithm would then
serve as an heuristic to make arbitrary choices when no forced
choice exists.

V. A PARTITIONING ALGORITHM

Any matrix which can cause backtracking in a matrix
decomposition algorithm contains a partition. Any nonback-
tracking algorithm to perform a matrix extraction must be able
to either determine when a partition exists and act accordingly
or ensure that no invalid choice is made if a partition exists.
Neiman’s algorithm acts upon partitions by convolving the
marked elements until the partitions are accounted for although
never recognized per se. An algorithm to recognize these
partitions is given below.

PROCEDURE PARTITION (I f m , E,) ;

var H L , partition-exists, MI , Mz ;

BEGIN

1. H L := H,; E , := 0 ;
WHILE H L # @ DO
BEGIN

2. partition-exists := FALSE ;
GENERATE_PARTITION(H;, partition-exits, MI, M2) ;
IF (partition-exists = FALSE) THEN

3a. BEGIN
Choose i . j such that H L [i , j] # 0 ;

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:16 from IEEE Xplore. Restrictions apply.

1250 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 41, NO. 8, AUGUST 1993

H L := H L \ i , j ; E,[i,j] := 1
END
ELSE

3b. BEGIN
PARTITION(MI, E l) ;
PARTITION(M2, E2) ;
E, := E , + El + E,; H L := @
END
END (while)

END(procedure) ;

The algorithm works as follows. Step 1 initializes the vari-
ables. The WHILE loop, consisting of steps 2,3a, and 3b, adds
elements to E, until it is a permutation matrix. Step 2 calls
subroutine GENERATE-PARTITION to check if a partition
exists, i.e., if the conditions of Theorem 2 are met. If a partition
exists, the subroutine forms the submatrices and returns them
in M I and M2. If no partition exists, step 3a marks an arbitrary
nonzero element and removes its row and column from H k .
If a partition does exist, step 3b recursively processes the two
partition submatrices.

The heart of the algorithm is subroutine GENERATE-
PARTITION. Here it is implemented as a highly parallel
subroutine which checks all 2k possible sets of rows of the
matrix. This subroutine is shown below.

PROCEDURE GENERATEPARTITION
(H L , partition-exists, M I . M2) ;

var R , C ;

BEGIN

1. Mi := 0; M2 := 0 ;
PARFOR each possible set of rows of H L DO
BEGIN

2. R := the set of rows of H L ;
C := the set of all columns of H L which have at least

one nonzero element in a row of R;
3. IF IRI = IC1 THEN

BEGIN

MI := the rows and columns of H L in R and C ;
M2 := the rows and columns of H L not in R and C ;
partition-exists := TRUE
END ;
END(parfor)

END(procedure) ;

This subroutine generates all possible sets R in parallel, and
checks all possible partitions. Step 1 sets the parameters and
begins the parallel executions. Step 2 checks the conditions of
Theorem 2. If a partition exists, step 3 forms the partition

submatrices and sets partition-exists. Once a partition is
found, all parallel executions are immediately terminated.
The subroutine exits and returns the values derived from the
parallel execution which finds the partition. If more than one
partition is found, the algorithm arbitrarily selects one and
returns its values in MI and M2.

To illustrate the execution of this algorithm, consider the
matrix

r i 0 2 01
0 2 0 1

0 1 0 2
H m = l2 0 1 0]

Step 1 sets H L = H , and E, = 0. Step 2 calls subroutine
GENERATE-PARTITION. Step 1 of the subroutine sets its
parameters and begins the parallel executions. One of these
executions has R = {1,3}. Step 2 sets C = {1,3}; since
1721 = IC) = 2, step 3 sets partition-exists = TRUE, and

r l 2 1 r 1

Returning to the main procedure, a partition does exist, so
step 3b recursively processes the two submatrices. This may
result in

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0

E l = [O and E * = [O '1
The final result is

r l 0 0 01
0 0 0 1

0 1 0 0
E m = lo 0 1 0 J

This algorithm will always generate the permutation matrix
E , without backtracking. This is because a partition is rec-
ognized before an element is chosen; thus, illegal choices
are never made. The subroutine GENERATJ-PARTITION is
exhaustive, so a partition is always found if one exists.

The time complexity of PARTITION is dominated by
the time complexity of subroutine GENERATE-PARTITION,
which is called k times in the worst case. If no partition
exists, the subroutine checks all 2'" possible sets of R the
first time 2'-l sets the second time, and so on. For all IC
iterations, this can result in at most 2'"+' - 1 executions. Using
one processor, the time complexity becomes T (k) = O(2').
This time can be improved using more than one processor;
however, there are constraints. One element of E , must be
found before the next can be sought, so the k subroutine
calls from PARTITION cannot overlap. The parallel branches
in GENERATE-PARTITION are totally independent, so the
time complexity of the subroutine can be reduced to O(1)
by using 2k processors. Thus, using 2'" processors, the time
complexity of PARTITION reduces to O(I C) . The performance
of PARTITION depends on the value of IC. In particular, this
algorithm is most efficient when IC = O(lg N) , where N is

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:16 from IEEE Xplore. Restrictions apply.

CARPINELL1 AND ORUC: NONBACKTRACKING MATRIX DECOMPOSITION AL

the number of inputs to the Clos network. In this case, the
time and hardware complexities of PARTITION are O(lg N),
and O (N) , respectively. Hence, when k = O(lg N), one can
decompose the H , matrix without backtracking in logarithmic
time and using a polynomial order of processors. As such, this
fact shows that the conjecture by Bassalygo and Neiman [lo]
does not hold for all values of IC. We also note that the worst
time and hardware complexities of PARTITION are O (N) and
0 (2 N) which occur when k = O (N) .

VI. CONCLUSIONS
Partitioning is an important characteristic of the matrix

decomposition class of routing algorithms for Clos networks.
This paper has demonstrated its applicability and used it to
improve current routing algorithms. A separate algorithm has
been developed which makes use of partitioning to find the
extraction matrix E,.

In spite of the high hardware cost, the partitioning algorithm
compares well to other algorithms in its class. Neiman’s
algorithm, the only other matrix decomposition algorithm
which works for all permutations, has a runtime of O(k2m)
for extracting one matrix [9]. The parallel version of the
partitioning algorithm improves on this runtime, and does
not require the backtracking used by Stage 2 of Neiman’s
algorithm. The algorithms of Jajszczyk and Ramanujam are
both faster than the partitioning algorithm, but do not work
on all permutations. The partitioning algorithm can be used
to make these algorithms realize all permutations, or they can
be used to generate the arbitrary choices of i and j in the
partitioning algorithm.

Finally, we should note that, after we submitted this paper,
we found out from one of the referees that Gordon and
Srikanthan [7] published an algorithm which they claimed to
be nonbacktracking. However, Chiu and Siu [5] have reported
an error in this algorithm. They also provided a modified
version of the original algorithm which they claim to be
correct based on simulation results, but without a proof. Unlike
most matrix decomposition algorithms, the procedures in these
papers use two matrices, rather than one, and are thus not
directly amenable to the analysis presented in this paper.

ACKNOWLEDGMENT

The authors thank the anonymous referees for their con-
structive remarks and suggestions.

REFERENCES

[l] S. Andresen, “The looping algorithm extended to base 2‘ rear-
rangeable switching networks,” IEEE Trans. Commun., vol. COM-25,

[2] V.E. BeneS, Mathematical Theory of Connecting Networks and Tele-
phone Traffic.

[3] C. Cardot, “Comments on ‘A simple control algorithm for the control of
rearrangeable switching networks,’” IEEE Trans. Commun., vol. COM-
34, p. 395, Apr. 1986.

[4] J. Carpinelli, “Interconnection networks: Improve routing methods for
Clos and Benes networks,” Ph.D. dissertation, Rensselaer Polytech. Inst.,
Troy, NY, Aug. 1987.

pp. 1057-1063, Oct. 1977.

New York: Academic, 1965.

GORITHM 1251

[5] Y.K. Chiu and W.C. Siu, “Comment: Novel algorithm for Clos-type
networks,” Electron. Lett., vol. 27, no. 6, pp. 524-526, Mar. 1991.

[6] C. Clos, “A study of non-blocking switching networks,” Bell Syst. Tech.
J., vol. 32, no. 2, pp. 406-424, Mar. 1953.

[7] J. Gordon and S. Srikanthan, “Novel algorithm for Clos-type networks,”
Electron. Lett., vol. 26, no. 21, pp. 1772-1774, Oct. 1990.

(81 P. Hall, “On representatives of subsets,” J. London Math. Soc., vol. 10,
pp. 26-30, 1935.

[9] F. Hwang, “Control algorithms for rearrangeable Clos networks,” IEEE
Trans. Commun., vol. COM-31, pp. 952-954, Aug. 1983.

[IO] A. Jajszczyk, “A simple algorithm for the control of rearrange-
able switching networks,” IEEE Trans. Commun., vol. COM-33,
pp. 169-171, Feb. 1985.

[11) M. Kubale, “Comments on ‘Decomposition of permutation networks,”’
IEEE Trans. Comput., vol. C-31, p. 265, Mar. 1982.

[12] V. 1. Neiman, “Structure et command optimales de reseaux de connexion
sans blocage,” Ann. Telecommun., vol. 24, pp. 232-238, July -Aug.
1969.

[13] D.C. Opferman and N.T. Tsao-Wu, “On a class of rearrangeable
switching networks: Part I: Control algorithm,” Bell Syst. Tech. J.,
vol. SO, no. 5, pp. 1579-1600, May-June 1971.

(141 0. Ore, The Four-Color Problem.
[15) A. Y. ON^, “Designing cellular permutation networks through coset

decompositions of symmetric groups,” J. Parallel Distributed Comput.,
vol. 4, no. 2, pp. 404-422, Aug. 1987.

1 16) H. R. Ramanujam, “Decomposition of permutation networks,” IEEE
Trans. Computers, vol. C-22, pp. 639-643, July 1973.

[17] L. W. Shapiro, Introduction to Abstract Algebra. New York: McGraw-
HI11, 1975.

[18] A. Waksman, “A permutation network,” J. ACM, vol. 15, no. 1,
pp. 159-163, Jan. 1968.

New York: Academic, 1967.

John D. Carpinelli (S’81 -M’83-SM’92) received
the B.E. degree in electrical engineering from
Stevens Institute of Technology, Hoboken, NJ, in
1983, and the M.E. degree in electrical engineering
and the Ph.D. degree in computer and systems
engineering from Rensselaer Polytechnic Institute,
Troy, NY, in 1984 and 1987, respectively.

In 1986 he joined the Department of Electrical
and Computer Engineering at the New Jersey
Institute of Technology, Newark, where he is
currently an Associate Professor. His primary

research interests include interconnection networks, multiprocessor system
design, and biomedical computing.

A. Yavuz Orug (S’81 -M’83-SM’92) received the
B.Sc. degree in electrical engineering from Middle
East Technical University in 1976, the MSc. degree
in electronics from University of Wales in 1978,
and the Ph.D. degree in electrical engineering from
Syracuse University in 1983.

He was a faculty member in the Electrical, Com-
puter and Systems Engineering Department at Rens-
selaer Polytechnic Institute, Troy, NY, from 1983
to 1987. He is currently a faculty member in the
Electrical Engineering Department at the University

of Maryland, College Park. His research interests include advanced computer
systems, parallel processing, and interconnection networks.

Dr. Orus is a member of the IEEE Computer and Information Theory
Societies.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:16 from IEEE Xplore. Restrictions apply.

